jueves, 16 de junio de 2011

circuitos electronicos

La fibra óptica

La fibra óptica es una delgada hebra de vidrio o silicio fundido que conduce la luz. Se requieren dos filamentos para una comunicación bi-direccional: TX y RX.

El grosor del filamento es comparable al grosor de un cabello humano, es decir, aproximadamente de 0,1 mm. En cada filamento de fibra óptica podemos apreciar 3 componentes:

  • La fuente de luz: LED o laser.
  • el medio transmisor : fibra óptica.
  • el detector de luz: fotodiodo.

Un cable de fibra óptica está compuesto por: Núcleo, manto,recubrimiento, tensores y chaqueta.

Las fibras ópticas se pueden utilizar con LAN, así como para transmisión de largo alcance, aunque derivar en ella es más complicado que conectarse a una Ethernet. La interfaz en cada computadora pasa la corriente de pulsos de luz hacia el siguiente enlace y también sirve como unión T para que la computadora pueda enviar y recibir mensajes.

Convencionalmente, un pulso de luz indica un bit 1 y la ausencia de luz indica un bit 0. El detector genera un pulso eléctrico cuando la luz incide en él. Éste sistema de transmisión tendría fugas de luz y sería inútil en la práctica excepto por un principio interesante de la física. Cuando un rayo de luz pasa de un medio a otro, el rayo se refracta (se dobla) entre las fronteras de los medios.
El grado de refracción depende de las propiedades de los dos medios (en particular, de sus índices de refracción). Para ángulos de incidencia por encima de cierto valor crítico, la luz se refracta de regreso; ninguna función escapa hacia el otro medio, de esta forma el rayo queda atrapado dentro de la fibra y se puede propagar por muchos kilómetros virtualmente sin pérdidas. En la siguiente animación puede verse la secuencia de transmisión.



Las fibras ópticas funcionan gracias al principio de la reflexión total interna, ver Fig. 02, que se da debido a que la fibra o núcleo tiene un cierto índice de refracción superado por el del revestimiento, por lo tanto el rayo de luz, cuando se "desplaza" por la fibra y choca con la pared de ésta, se produce el mismo efecto que observan los buzos cuando están debajo del agua; éstos, cuando ven hacia arriba hacia la superficie del agua, pueden ver lo que está afuera pero sólo hasta cierto ángulo de la vertical, a partir de este ángulo sólo verán un reflejo de lo que esta alrededor de ellos; eso mismo pasa en la fibra, como si ésta fuera el agua, y el revestimiento el aire más arriba de la superficie, que tiene menor índice de refracción.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Fig. 01 – Reflexión Total dentro de una Fibra Óptica

Los rayos de luz pueden entrar a la fibra óptica si el rayo se halla contenido dentro de un cierto ángulo denominado cono de aceptación. Un rayo de luz puede perfectamente no ser transportado por la fibra óptica si no cumple con el requisito del cono de aceptación. El cono de aceptación está directamente asociado a los materiales con los cuales la fibra óptica ha sido construida. La Fig. 03 ilustra todo lo dicho.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Fig. 03Diagrama del Cono de Aceptación

Una vez que la luz entra en la fibra óptica dentro del cono de aceptación, es decir, que sí puede ser propagado dentro de esta, tiene diferentes opciones en su camino:

·         Viajar en línea recta: Si la fibra está perfectamente recta, y el rayo de luz se hace entrar en una forma alineada exactamente igual que la fibra, este rayo puede ir por el centro de la fibra sin tocar en ningún momento las paredes de la fibra, de esta forma el rayo puede viajar distancias muy grandes y llegará de forma muy rápida al otro extremo de la fibra. Esto sería el caso del rayo que se muestra en la Fig. 03 con el color rojo. Esto nunca sucede, por dos cosas: una, que es muy difícil tener una fibra óptica perfectamente recta, y por otro lado, es difícil alinear el rayo de luz exactamente con la fibra.

·         Viaje con rebote en las paredes: Esto es lo que sucede en la mayoría de los casos. La luz siempre entra con un cierto ángulo de apertura en el extremo de la fibra, lo que hace que desde el comienzo del camino el rayo vaya rebotando en las paredes, por lo que va a tardar un cierto tiempo más que el rayo que viaja sin rebotar. Por otro lado el rayo de luz no es un solo rayo como tal, en realidad es un haz de rayos, que pueden tardar diferentes tiempos en llegar al otro extremo, por lo que un mismo rayo tiene un cierto tiempo de duración mayor en el extremo que recibe que en el que manda. Los rebotes suceden además principalmente porque las fibras se colocan no siempre en línea recta, normalmente tienen dobleces y curvaturas que hacen que los rayos se vean forzados a rebotar muchas veces más que si fuera recto, pero incluso así, la fibra óptica puede transmitir esa luz una distancia de cientos de kilómetros sin necesidad de repetidoras, gracias a que el revestimiento no absorbe nada de la luz transmitida.

·         Rayo fuera de la fibra: En algunos casos extremos puede suceder que si el cable es doblado muy abruptamente, la luz no pueda seguir rebotando y viajando a través de la fibra, y se salga de ésta, tal como si se introdujera en la fibra fuera del cono de aceptación. Esto sucede porque hay un ángulo crítico para el que para cierto ángulo menor si hay reflexión total interna, pero para un ángulo mayor no. Esto se muestra en la Fig. 3 como el rayo de color verde.

Por otro lado, algo de la señal es degradada dentro de la fibra, sobre todo debido a las impurezas en el cristal. El grado que la señal se degrade depende de la pureza del cristal y de la longitud de onda de la luz transmitida (por ejemplo, 850 nm = 60 a 75 %/km; 1.300 nm = 50 a 60 %/km; 1.550 nm es mayores de 50 %/km). Algunas fibras ópticas superiores demuestran mucho menos degradación de la señal (menos de 10 %/km en 1.550 nm).













COMPARADOR DE TENSIÓN


Tienen como misión comparar una tensión variable con otra, normalmente constante, denominada tensión de referencia, dándonos a la salida una tensión positiva o negativa. Se basan en hacer trabajar a saturación los A.O. dando a la salida una tensión Vcc. Existen dos tipos básicos de comparadores:

AMPLIFICADOR INVERSOR


Se llama así este montaje porque la señal de salida es inversa de la de entrada, en polaridad, aunque pude ser mayor, igual o menor, dependiendo esto de la ganancia que le demos al amplificador en lazo cerrado. La señal, como vemos en la figura, se aplica al terminal inversor o negativo del amplificador y el positivo o no inversor se lleva a masa.La resistencia R2, que va desde la salida al terminal de entrada negativo, se llama de realimentación.



AMPLIFICADOR NO INVERSOR


Este circuito es muy parecido al inversor, la diferencia es que la señal se introduce por el terminal no inversor, lo cual va a significar que la señal de salida estará en fase con la señal de entrada y amplificada.El análisis matemático será igual que en el montaje inversor.


INTEGRADOR


Este circuito, como se ve en la figura tiene realimentación negativa, con lo cual se podría pensar que es una aplicación lineal, pero no es así, se cumplen todas las cualidades para ser una aplicación lineal, es decir, masa virtual y el A.O. no trabaja a la saturación, y lo único que hace que no sea una aplicación lineal, es que la onda de salida es distinta en forma a la de entrada.



OPTOACOPLADOR

Es un componente utilizado para aplicar señal de un circuito a otro sin conexión eléctrica, consisten en un emisor de luz acoplado óptimamente a un receptor de luz, ambos tienen conexión eléctrica al exterior y se encuentran instalados en una misma capsula y aislado de la luz exterior.

Al aplicar una señal eléctrica a los extremos de un LED, este se transformara en una señal luminosa que será captada por un fototransistor o elemento fotosensible; este transformara la señal luminosa captada en una señal eléctrica  de las mismas caracterisicas aplicadas al extremo del LED.

No hay comentarios:

Publicar un comentario